0=3y^2+30y+70

Simple and best practice solution for 0=3y^2+30y+70 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=3y^2+30y+70 equation:


Simplifying
0 = 3y2 + 30y + 70

Reorder the terms:
0 = 70 + 30y + 3y2

Solving
0 = 70 + 30y + 3y2

Solving for variable 'y'.

Combine like terms: 0 + -70 = -70
-70 + -30y + -3y2 = 70 + 30y + 3y2 + -70 + -30y + -3y2

Reorder the terms:
-70 + -30y + -3y2 = 70 + -70 + 30y + -30y + 3y2 + -3y2

Combine like terms: 70 + -70 = 0
-70 + -30y + -3y2 = 0 + 30y + -30y + 3y2 + -3y2
-70 + -30y + -3y2 = 30y + -30y + 3y2 + -3y2

Combine like terms: 30y + -30y = 0
-70 + -30y + -3y2 = 0 + 3y2 + -3y2
-70 + -30y + -3y2 = 3y2 + -3y2

Combine like terms: 3y2 + -3y2 = 0
-70 + -30y + -3y2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(70 + 30y + 3y2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(70 + 30y + 3y2)' equal to zero and attempt to solve: Simplifying 70 + 30y + 3y2 = 0 Solving 70 + 30y + 3y2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 23.33333333 + 10y + y2 = 0 Move the constant term to the right: Add '-23.33333333' to each side of the equation. 23.33333333 + 10y + -23.33333333 + y2 = 0 + -23.33333333 Reorder the terms: 23.33333333 + -23.33333333 + 10y + y2 = 0 + -23.33333333 Combine like terms: 23.33333333 + -23.33333333 = 0.00000000 0.00000000 + 10y + y2 = 0 + -23.33333333 10y + y2 = 0 + -23.33333333 Combine like terms: 0 + -23.33333333 = -23.33333333 10y + y2 = -23.33333333 The y term is 10y. Take half its coefficient (5). Square it (25) and add it to both sides. Add '25' to each side of the equation. 10y + 25 + y2 = -23.33333333 + 25 Reorder the terms: 25 + 10y + y2 = -23.33333333 + 25 Combine like terms: -23.33333333 + 25 = 1.66666667 25 + 10y + y2 = 1.66666667 Factor a perfect square on the left side: (y + 5)(y + 5) = 1.66666667 Calculate the square root of the right side: 1.29099445 Break this problem into two subproblems by setting (y + 5) equal to 1.29099445 and -1.29099445.

Subproblem 1

y + 5 = 1.29099445 Simplifying y + 5 = 1.29099445 Reorder the terms: 5 + y = 1.29099445 Solving 5 + y = 1.29099445 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + y = 1.29099445 + -5 Combine like terms: 5 + -5 = 0 0 + y = 1.29099445 + -5 y = 1.29099445 + -5 Combine like terms: 1.29099445 + -5 = -3.70900555 y = -3.70900555 Simplifying y = -3.70900555

Subproblem 2

y + 5 = -1.29099445 Simplifying y + 5 = -1.29099445 Reorder the terms: 5 + y = -1.29099445 Solving 5 + y = -1.29099445 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + y = -1.29099445 + -5 Combine like terms: 5 + -5 = 0 0 + y = -1.29099445 + -5 y = -1.29099445 + -5 Combine like terms: -1.29099445 + -5 = -6.29099445 y = -6.29099445 Simplifying y = -6.29099445

Solution

The solution to the problem is based on the solutions from the subproblems. y = {-3.70900555, -6.29099445}

Solution

y = {-3.70900555, -6.29099445}

See similar equations:

| 5(n+2r)+3n= | | 0.3+0.6=1.5 | | 5x-3-2x=x+11 | | 2(3x-1)=8x+11 | | What*12=400 | | 5=v-2 | | 7x/6-3=25 | | Bp+25bp+p= | | 5(4+3x)+3=10 | | 5x=4x+17 | | 13x-1-8x+6= | | 7x-12=x+24 | | 6(5q+3w-2w)= | | 3(2n+10)= | | -2x-8=x+1 | | 5x-2=31 | | 3z-10=3-5(z+11) | | -9=-6(x-5) | | (x+5)+(3x-2)=280 | | -9=-6(x+5) | | 126+y=180 | | 4x-9+2x=-6x+5-3 | | 3*4+14-5-[-2]*7=-23 | | x+54=y | | -3k-1=12 | | x=3y(y+w)-1 | | k=5/8m | | 4x-9+2x=-6x+5 | | 6(3x+2)+5(7x-6)-12x=6(x-3)+5(6x-1) | | X^2-8x=100 | | 7xy+2y^2=1 | | 20y^4+35y^3+15y^2= |

Equations solver categories